
Carnegie Mellon
Software Engineering Institute

DISTRIBUTION STATEMENT A
Approved for Public Release

Distribution Unlimited

Architecture
Reconstruction
Guidelines,
2"^ Edition

Rick Kazman
Liam O'Brien
Chris Verlioef

December 2002

20030321^032

TECHNICAL REPORT
CMU/SEI-2002-TR-034

ESC-TR-2002-034

Carnegie Mel Ion
=s=r Software Engineering Institute

Pittsburgh, PA 15213-3890

Architecture
Reconstruction
Guidelines,
2"'' Edition

CMU/SEI-2002-TR-034
ESC-TR-2002-034

Rick Kazman
Liam O'Brien
Ciiris Verhoef

December 2002

Architecture Tradeoff Analysis Initiative

Unlimited distribution subject to tlie copyright.

This report was prepared for the

SEI Joint Program Office
HQ ESC/DIB
5 Eglin Street
HanscomAFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD position. It is published in the
interest of scientific and technical information exchange.

FOR THE COMMANDER

Christos Scondras
Chief of Programs, XPK

This work is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a
federally funded research and development center sponsored by the U.S. Department of Defense.

Copyright 2002 by Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING BUT NOT
LIMITED TO, WARRANTY OF HTNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES
NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT,
TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and "No Warranty" statements are included with all reproductions and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number F19628-00-C-0003 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development
center. The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the
work, in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the
copyright license under the clause at 252.227-7013.

Table of Contents

Abstract vii

1 Introduction 1
(

2 Architecture Reconstruction 3
2.1 Recommendations for Reconstruction

Projects 5

3 Information Extraction Phase 7
3.1 Guidelines 9

4 Database Construction Phase 11
4.1 Guidelines 13

5 View Fusion Phase 15
5.1 Improving a View 15
5.2 Disambiguating Function Calls 17
5.3 Guidelines 17

6 Architecture Reconstruction Phase
6.1 Guidelines

19
23

7 Other Architecture Reconstruction
Approaches 25
7.1 Bowman and Associates 25
7.2 Harris and Associates 25
7.3 Guo and Associates 26

8 Summary 27

References 29

CMU/SEI-2002-TR-034

CMU/SEI-2002-TR-034

List of Figures

Figure 1: Outline of tlie Dali Workbencli and
Its Phases 5

Figure 2: Conversion of the Extracted View to
SQL Format 11

Figure 3: Example of SQL Code Generated
in Dali 12

Figure 4: Static and Dynamic Data Views 15

Figure 5: The Differences Between Static and
Dynamic Views 16

Figure 6: Items That Were Added to and
Omitted from the Overall View 17

Figure 7: An Architectural View Represented
at the Highest Hierarchical Level 19

Figure 8: Subset of the Elements and Relations 20

Figure 9: Graphical Representation of
Elements and Relations 21

Figure 10: Patterns to Aggregate Local
Variables to the Function in
Which They Are Defined 21

Figure 11: Result of Applying the Pattern to
Aggregate Local Variables 22

Figure 12: Query to Identify the
LogicaLinteraction Component 23

Figure 13: Example of a Bad Pattern 24

CMU/SEI-2002-TR-034

iv CMU/SEI-2002-TR-034

List of Tables

Table 1: A Typical Set of Source Elements
and Relations 7

Table 2: Guiding Principles for Choosing
Types of Extraction 10

CMU/SEI-2002-TR-034

vi CMU/SEI-2002-TR-034

Abstract

Architecture reconstruction is the process of obtaining the "as-built" architecture of an im-
plemented system from the existing legacy system. For this process, tools are used to extract
information about the system that will assist in building successive levels of abstraction. Al-
though generating a useful representation is not always possible, a successful reconstruction
results in an architectural representation that aids in reasoning about the system. This recov-
ered representation is most often used as a basis for redocumenting the architecture of an ex-
isting system if the documentation is out of date or nonexistent, and can be used to check the
"as-built" architecture against the "as-designed" architecture. The architectural representation
can also be used as a starting point for reengineering the system to a new desired architecture.
Finally, the representation can be used to help identify components for reuse or to help estab-
lish a software product line.

This report describes the process of architecture reconstruction using the Dah architecture
reconstruction workbench. Guidelines are presented for reconstructing the architectural rep-
resentations of existing systems. Most of these guidelines are not specific to the Dali tool, can
be used with other tools, and are useful even if the architecture reconstruction is carried out
manually.

CMU/SEI-2002-TR-034 vii

viii CMU/SEI-2002-TR-034

1 Introduction

Architecture reconstruction is the process where the "as-built" architecture of an imple-
mented system is obtained from an existing legacy system. This is done through a detailed
system analysis using tool support. The tools extract information about the system and aid in
building successive levels of abstraction. If the reconstruction is successful, the end result is
an architectural representation that aids in reasoning about the system. In some cases, how-
ever, generating a useful representation is not possible due to the complexity and the lack of
structure of the system involved.

This is the second edition of this technical report, which was originally published in 2001. In
this edition, a new Section 2 provides more details about architecture reconstruction, and Sec-
tion 2.1 has been added to provide recommendations for reconstruction projects. Also in this
edition, the name of the first phase of the reconstruction process has been changed to "Infor-
mation Extraction" from "View Extraction" to more accurately describe what happens in the
phase and to make clearer the distinction between this phase and phase 4, where architectural
views are generated.

CMU/SEI-2002-TR-034

CMU/SEI-2002-TR-034

2 Architecture Reconstruction

Architecture reconstruction generates an architectural representation that can be used in sev-
eral ways. The main use for this representation is to document the existing architecture of a
system. If no documentation exists or the available documentation is out of date, the recov-
ered architectural representation can be used as a basis for redocumenting the architecture.
Reconstruction can be performed either during the development of an architecture or after the
development has been completed to recover the "as-built" architecture of the system to check
conformance against the "as-designed" architecture. The architectural representation can also
be used as a starting point for reengineering the system to a new desired architecture. Finally,
the representation can be used as a means for identifying components for reuse or for estab-
lishing an architecture-based software product line.

Architecture reconstruction has been used in a variety of projects ranging from Magnetic
Resonance Imaging (MRI) scanners to public telephone switches, and from helicopter guid-
ance systems to classified National Aeronautics and Space Administration (NASA) systems.
The Software Engineering Institute (SEI^*^) has used architecture reconstruction to

• redocument architectures for physics simulations

• understand architectural dependencies in embedded control software for reengineering

• evaluate the conformance of a satellite ground station system's implementation to its ref-
erence architecture

• reconstruct three embedded automotive systems and evaluate their potential for conver-
sion to a product line

• recover the architecture of several network management systems

• recover the architecture of a satellite simulation system

Other organizations have used the SEFs architecture reconstruction methods as well. A tech-
nical note by Liam O'Brien provides details about various projects undertaken at Nokia,
some of them using the SEFs methods [O'Brien 02].

Architecture reconstruction requires a range of activities and skills. Software engineers fa-
miliar with compiler construction techniques and UNIX environments (especially utilities
such as grep, sed, awk, perl, python, and lex/yacc) have the necessary skills to undertake ar-
chitecture reconstruction. However, with the large amount of software in most systems, it is
impossible to perform all architecture reconstruction activities manually.

^^ SEI is a service mark of Carnegie Mellon University.

CMU/SEI-2002-TR-034

Tool support is needed for these activities, and in general, no single tool or set of tools is ade-
quate. Software systems are often implemented in many languages and dialects. For example,
a mature MRI scanner easily contains software written in 15 different languages. Because of
this diversity, there is no complete, universally applicable tool set that can operate with the
push of a button. Instead, a tool set (workbench) is needed to support architecture reconstruc-
tion activities.

An architecture reconstruction workbench should be open (i.e., easily accommodate new
tools as required) and provide a lightweight integration framework so that new tools added to
the set do not impact the existing tools or data unnecessarily. The SEI has developed a work-
bench of this type called Dali [Kazman 99]. Other examples include Sneed's reengineering
workbench [Sneed 98], the software renovation factories of Verhoef and associates [Brand
97], and the rearchitecting tool suite by Philips Research [Krikhaar 99].

Using the tool support provided by the Dali workbench, the software architecture reconstruc-
tion process comprises the following five phases:

1. Information Extraction

In the Information Extraction phase, information is obtained from various sources.

2. Database Construction

The Database Construction phase involves converting the extracted information into the
Rigi Standard Form [Miiller 93] (a tuple-based data format in the form of "relation <en-
tityl> <entity2>") and an SQL database format from which the database is created.

3. View Fusion

The View Fusion phase combines information stored in the database to generate a set of
low-level views.

4. Architecture Reconstruction

In the Architecture Reconstruction phase, the main work of building abstractions and
representations, and generating an architectural representation takes place.

5. Architecture Analysis

The Architecture Analysis phase involves analyzing the resulting architecture. Architec-
ture analysis is not addressed in this report, but is the topic of i47y4Af.- Method for Archi-
tecture Evaluation [Kazman 00]. Current and complete details about architecture analy-
sis can be found in the book Evaluating Software Architectures: Methods and Case
Studies [Clements 02].

All five phases are highly iterative. Figure 1 depicts the structure of the Dali workbench and
situates the tasks of architecture reconstruction within it.

CMU/SEI-2002-TR-034

Information Extraction
1

Lexical Parsing Profiling ...
1

Arcliitecture
Reconstruction

Database

Database

Pattern Definition
and Recognition

Visualization
and Interaction

Presentation

Architecture
Analysis

Documentation

Figure 1: Outline of the Dali Worl<bencti and Its Phases

Several people are needed to carry out the reconstruction process, including the person doing
the reconstruction (the reconstructor) and one or more people who are familiar with the sys-
tem being reconstructed (e.g., architects or software engineers).

The reconstructor extracts the information from the system and, either manually or using
tools, generates views of the architecture. The reconstructor begins by generating a set of hy-
potheses about the system. These hypotheses reflect the set of inverse mappings from the set
of source artifacts to the design (ideally the opposite of the design mappings). The hypotheses
are then tested by generating and applying these inverse mappings to the extracted informa-
tion and validating the results. In order to generate these hypotheses and validate them, the
reconstructor needs the support of people who are familiar with the system, including the sys-
tem architect or engineers who initially developed or currently maintain the system.

2.1 Recommendations for Reconstruction Projects
The following are general recommendations for reconstruction projects:

• Have a goal and a set of objectives or questions in mind before undertaking an architec-
ture reconstruction project. For example, reusing part of the system in a new application
may be a goal. Without these goals and objectives, a lot of effort could be spent on ex-
tracting information and generating architectural views that may not be helpful or serve
any purpose.

• Obtain a high-level architectural view of the system before beginning the detailed recon-
struction process. This view guides the

CMU/SEI-2002-TR-034

- extraction process by helping to identify the information that needs to be ex-
tracted from the system

- reconstruction process by helping to determine what to look for in the architec-
ture and what views to generate

Use the existing documentation to generate only high-level views of the system. In many
cases, the existing documentation for a system may not accurately reflect the system as it
is implemented, but it should still give an indication of the high-level concepts.

Involve the people who are familiar with the system early in the project to get a better
understanding of the system being reconstructed. Tools can support the reconstruction ef-
fort and shorten the reconstruction process, but they cannot perform an entire reconstruc-
tion automatically. Architecture reconstruction requires the involvement of people (e.g.,
architects, maintainers, and developers) who are familiar with the system.

Assign someone to work on the architecture reconstruction project full-time. Architecture
reconstruction involves an extensive, detailed analysis of a system and requires signifi-
cant effort.

The following sections describe the architecture reconstruction process in more detail and
present guidelines that can be used to carry out each phase. Most of these guidelines are not
specific to the Dali tool, can be used with other tools, and are useful even if the architecture
reconstruction is carried out manually.

•

CMU/SEI-2002-TR-034

3 Information Extraction Phase

The Information Extraction phase involves analyzing the existing design and implementation
artifacts of a system to construct a model based upon multiple source views. From the source
artifacts (e.g., code, header files, build files) and other artifacts (e.g., execution traces) of the
system, the elements of interest and the relations between them can be identified and captured
to produce several fundamental views of the system. Table 1 shows a list of typical elements
and several relations between elements that might be extracted from a system.

Table 1: A Typical Set of Source Elements and Relations
Source
Element

Relation Target
Element

Description

File includes File C preprocessor #include of one file by
another

File contains Function definition of a function in a file

File defines_var Variable definition of a variable in a file

Function calls Function static function call

Function access_read Variable Read access on a variable

Function access_write Variable Write access on a variable

Each of the relations between the elements constitutes a different view of the system. The
"calls" relation between the functions yields the call graph of the system, showing how the
various functions in the system interact. The "includes" relation between files shows the de-
pendence view between files in the system. The "access_read" and "access_write" relations
between functions and variables show how data is used in the system. Certain functions may
write a set of data and others may read it. This relation information is used to determine how
data is passed between various parts of the system. For example, it can determine whether a
global data store is used (similar to a blackboard architectural style) or whether most infor-
mation is passed through function calls.

If the system being analyzed is large and divided into a particular directory structure on a file
system, capturing that directory structure may be important to the reconstruction process.
Certain components or subsystems may be stored in particular directories, and capturing rela-
tions such as "dir_contains_file" and "dir_contains_dir" can help to identify components later
in the reconstruction process.

CMU/SEI-2002-TR-034

The set of elements and relations extracted will depend on the type of system being analyzed
and the extraction support tools available. If the system to be reconstructed is object oriented,
classes and methods would be added to the list of elements to be extracted, and relations such
as "Class is_subclass Class" and "Class contains Method" could be extracted and used in the
reconstruction process.

Extracted views can be categorized as either static or dynamic. Static views are those ob-
tained by observing only the artifacts of the system, while dynamic views are those obtained
by observing the system during execution. In many cases, static and dynamic views can be
fused to create a more complete and accurate representation of the system. (This fusing is
discussed in Section 5.) If the architecture of the system changes at runtime, for example, a
configuration file is read in by the system, and certain components are loaded at runtime. The
runtime configuration should be captured and used when carrying out the reconstruction.

A source view can be extracted by applying whatever tools are available, appropriate, or nec-
essary for a given target system. The types of tools that we have used regularly in our extrac-
tions include the following:

parsers (e.g., Imagix, SNiFF+, C++ Information Abstractor [CIA], rigiparse)

abstract syntax tree (AST)-based analyzers (e.g., Gen++, Refine)

lexical analyzers (e.g.. Lightweight Source Model Extractor [LSME])

profilers (e.g., gprof)

code instrumentation

ad hoc (e.g., grep, perl)

These tools are applied to the raw source code. Parsers analyze the code and generate internal
representations from it (for the purpose of generating machine code). Typically, it is possible
to save this internal representation to obtain a source view. AST-based analyzers do a similar
job, but they build an explicit tree representation of the parsed information. Analysis tools
can be built that traverse the AST and output selected pieces of architecturally relevant in-
formation in an appropriate format.

Lexical analyzers examine source artifacts purely as strings of lexical elements or tokens.
The user of a lexical analyzer can specify a set of lexical patterns to be matched and the ele-
ments to be output. An example of a lexical pattern would be one that recognizes the tin-
elude <f ilename> directive in source files, and the output elements would be the source
file in which the #include appeared and the file within the angle brackets (< >). Finding
and extracting instances of this lexical pattern yields the dependencies that exist between
files.

Similarly, we have used a collection of ad hoc tools such as grep and perl to carry out lexical
pattern matching and searching within the code in order to output some required information.

8 CMU/SEI-2002-TR-034

All of these tools—code-generating parsers, AST-based analyzers, lexical analyzers, and ad
hoc lexical pattern matchers—are used to output purely static information.

Profilers and code coverage analysis tools can be used to output information about the code
as it is being executed. Using them does not usually require the addition of any new code to
the system. On the other hand, code instrumentation—which has wide applicability in the
field of testing—involves adding code to the system to make it output some specific informa-
tion (e.g., what processes connect with each other at runtime) while the system is executing
[McCabe 00]. All of these tools and techniques generate dynamic views of the system.

Tools to analyze design models, build files, makefiles, and executables can also be used to
extract further information as required. For instance, build files and makefiles include infor-
mation on module or file dependencies that may not be reflected in the source code.

Much architecture-related information can be extracted statically from source code, compile-
time artifacts, and design artifacts. However, this may not produce enough information for
the architecture recovery process. Some architecturally relevant information may not exist in
the source artifacts, due to late binding. Examples of late binding include

• polymorphism

• function pointers

• runtime parameterization

There are other reasons why the precise topology of a system might not be determined until
runtime. For example, multiprocess and multiprocessor systems, using middleware such as
Common Object Request Broker Architecture (CORBA), Jini, or Component Object Model
(COM), frequently establish their topology dynamically, depending on the availability of sys-
tem resources. The topology of such systems does not reside in their source artifacts and
hence cannot be reverse engineered using static extraction tools.

Therefore, it might be necessary to use tools that can generate dynamic information about the
system (e.g., profiling tools). In some instances, this might not be possible because tools that
can obtain this dynamic information are not available on the system platform. Also, there
might be no way to collect the results from code instrumentation. This problem usually oc-
curs with embedded systems, where there is no means to output the information generated
from code instrumentation.

3.1 Guidelines
The following guidelines apply to the Information Extraction phase:

• Use the "least effort" extraction. Consider the kind of information that needs to be ex-
tracted from a source corpus and choose the most appropriate tool. Is the information
lexical in nature? Does it require the comprehension of complex syntactic structures?

CMU/SEI-2002-TR-034

Does it require some semantic analysis? In each of tiiese cases, a different tool could be
applied successfully. In general, lexical approaches are the cheapest to use, and they
should be considered if reconstruction goals are simple.

Table 2: Guiding Principles for Ciioosing Types of Extraction

Guiding Principles Type of Extraction Required

The information that is to be extracted is
lexical in nature. A set of lexical patterns
can be written that allows the information
to be extracted.

Lexical analysis. (Simple lexical analysis
utilities such as perl and grep may be of
use.)

The information that needs to be ex-
tracted cannot be identified lexically.
Elements and relations can be identified
through the use of a grammar for a lan-
guage.

Parsing

More contextual information (semantic
information) must be available to clearly
identify certain elements and relations.

AST-based analyzers. (These allow an
AST to be built and updated after parsing
with semantic information.)

Validate the source information that is extracted. Before starting to fuse or manipulate the
various views that have been obtained, make sure that the correct information has been
captured in the view. Also make sure that the tools being used to analyze the source arti-
facts are carrying out their job correcdy. A detailed manual examination and verification
of a subset with the elements and relations against the underlying source code should be
carried out to establish that the correct information is being captured. The precise amount
of information that needs to be verified manually is up to the individual. Assuming that
this is a process of statistical sampling, the reconstractor can choose a desired confidence
level. In general, the more information that is validated manually, the higher the confi-
dence in the results.

Extract dynamic information where required. If a lot of runtime or late binding occurs
and the architecture is dynamically configurable, dynamic information about system run-
time is essential and should be extracted using whatever technique is most appropriate. If
a profiler is available, use it to extract runtime information. If the system runs on a plat-
form where no profiler is available, it might be necessary to instrument the code to obtain
the runtime information. When dynamic information cannot be extracted, only static in-
formation will be available for architectural representations.

10 CMU/SEI-2002-TR-034

4 Database Construction Phase

The set of extracted views are converted into the Dali format and stored in a relational data-
base during the Database Construction phase. Several tools and techniques have been incor-
porated into the Dali workbench to assist with this process. They consist mainly of perl
scripts that read the data and convert it into a file in the Rigi Standard Format. The extracted
views may be in many different formats depending on the tools used to extract them. For ex-
ample, an extraction tool like Imagix-4D can be used to load th^ source code of a system into
its internal representation, and this information is then dumped to a set of flat files indexed by
file or function. These files have a uniform structure, and tools can be developed in perl to
read these files and output information about elements and relations.

Once the elements and relations file (Extracted View) is converted to Rigi Standard Format, it
is read by another perl script. The data is output in a format that includes the necessary SQL
code to build and populate the relational tables with the extracted information. Figure 2 de-
picts this process.

Extracted
View
 > Rigi

Standard
Format

SQL code

perl
scripts

perl
scripts

Figure 2: Conversion of the Extracted View to SQL Format

CMU/SEI-2002-TR-034 11

Figure 3 shows a typical example of the SQL code that is generated.

create table calls(caller text, callee text);
create table accesses! func text, variable text);
create table defines_var(file text, variable text);

insert into calls values('main', 'control');
insert into calls values('main', 'clock');

insert into accesses values('main', 'statl');

Figure 3: Example of SQL Code Generated in Dali

Dali currently uses the PostgreSQL relational database.' When the data is entered into the
database, two additional tables are generated: components and relationships. The components
table lists the set of source and target elements that has been extracted from the system, and
the relationships table lists the set of relations that has been extracted from the system.

In addition to those currently available in Dali, new tools and techniques can be created to
convert the format or formats an extraction tool uses. For example, if a tool is required to
convert the output from a tool not currently supported, it can be built. Then the output from
the new tool can be converted into Rigi Standard Format and converted to SQL code. The
conversion tool used can become part of the Dali workbench.

In the current version of the Dali workbench, the PostgreSQL relational database provides
functionality through the use of SQL and perl for generating and manipulating the architec-
tural views [Stonebraker 90]. (Examples are shown in Section 4.) Changes could easily be
made to the SQL scripts to make them compatible with other SQL implementations.

For information on this database, go to <http://www.postgresql.org>.

12 CMU/SEI-2002-TR-034

4.1 Guidelines
The following guidelines apply to the Database Construction phase:

• Build database tables from the extracted relations to make processing the data views eas-
ier. For example, create a table that stores the results of a particular query, such as group-
ing the files into components or subsystems so the query will not need to be run again. If
the results of that query are required for building further queries, they can be accessed
through the table easily.

• As with any database construction, consider carefully the database design before getting
started. What will the primary (and possibly secondary) key be? Will any database joins
be particularly expensive because they span multiple tables?

• Use perl, awk, and similar lexical tools to change the format of data extracted using vari-
ous tools into the Rigi Standard Format so that the Dali workbench can use the data.
These tools are less expensive in terms of development time and resource utilization than
writing more complex tools using other languages.

CMU/SEI-2002-TR-034 13

14 CMU/SEI-2002-TR-034

5 View Fusion Pliase

In the View Fusion phase, a set of queries is defined that manipulates the extracted views to
create fused views. For example, a static call view might be fused with a dynamic call view.
As noted earlier, a static view might not provide all of the architecturally relevant informa-
tion. In the case of late binding in the system, some function calls might not be identifiable
until runtime, so a dynamic call view needs to be generated. These two views need to be rec-
onciled and fused to produce the complete call graph for the system.

The View Fusion phase reconciles and establishes connections between views that provide
complimentary information. Fusion is illustrated using the examples in Sections 5.1 and 5.2.
The first shows the improvement of a static view of an object-oriented system with the addi-
tion of dynamic information. The other shows the fusion of several views to identify function
calls in a system.

5.1 Improving a View

Consider the two code views shown in Figure 4: Static and Dynamic Data Views, which were
from the sets of methods extracted fi-om a system implemented in C++.

Static Extraction Dynamic Extraction

InputValue::GetValue
InputValue::SetValue
List::[]

InputValue::GetValue
InputValue::SetValue
InputValue::-InputValue

List::length InputValue::InputValue

List::attachr
List::detachr
PrimitiveOp::Compute

List::[]
List::length
List::getnth
List::List
List::~List
ArithmeticOp::Compute
AttachOp::Compute

StringOp::Compute

Figure 4: Static and Dynamic Data Views

The differences between these views are shaded in Figure 5.

CMU/SEI-2002-TR-034 15

Static Extraction

InputValue::GetValue
InputValue::SetValue
List::[]
List::length
liisti^rattachr
pist':;':4etachr
grimi t;iveC)p: ^: Confute

Dynamic Extraction

InputValue::GetValue
InputValue::SetValue
priputValue: •:-InputValue
InputValue::InputValue
List::[]
List::length
List::getnth
iiist: :List
tist: :-I;ist
ArithmeticOp::Compute
RttachOp;:Compute

^tringC^ :,'rcbmpute

Figure 5: The Differences Between Static and Dynamic Views

The dynamic view shows that List:: getnth is called. However, this method is not in-
cluded in the static analysis view because it was not identified by the static extraction tool.
That shows that the extraction tool is not perfect, making it necessary to validate the results
of the information extraction. Also, the calls to the constructor and destructor methods of In-
putValue and List are not included in the static view. These missing methods must be
added to the overall reconciled architectural view.

In addition, the static extraction shows that the PrimitiveOp class has a method called
Compute. The dynamic extraction results show no such class, but do show classes such as
ArithmeticOp, AttachOp, and StringOp, each of which has a Compute method and is in
fact a subclass of PrimitiveOp. PrimitiveOp is purely a superclass; it is never actually
called in an executing program. But it is the call to PrimitiveOp that a static extractor sees
when scanning the source code, since the polymorphic call to one of PrimitiveOp's sub-
classes occurs at runtime. To get an accurate view of the architecture, the static and dynamic
views of PrimitiveOp must be reconciled. To do this, a fusion is performed using SQL
queries over the extracted "calls", "actually_calls", and "has_subclass" relations. In this way,
we can see that the calls to PrimitiveOp:: Compute in the static view and to its various
subclasses in the dynamic view are really the same thing.

The lists in Figure 6 show the items that would be added to the fused view (in addition to the
methods that the static and dynamic views agreed upon) and those that are removed from the
fused view (even though one of the static or dynamic views included them).

16 CMU/SEI-2002-TR-034

Added to Fused View Not Added

InputValue::InputValue
InputValue::-InputValue

List
-List
getnth

ArithmeticOp::Compute
AttachOp::Compute

StringOp::Compute

Figure 6: Items That Were Added to and Omitted from the Overaii View

5.2 Disambiguating Function Calls
In a multiprocess application, name clashes are likely to occur. For example, several of the
processes might have a procedure called main. It is important to identify and disambiguate
these name clashes within the extracted views. Once again, by fusing information that can be
extracted easily, we can remove this potential ambiguity. In this case, we would need to fuse
the static calls view with a file/function containment view (to determine which functions are
defined in which source files) and a build dependency view (to determine which files are
compiled together to produce which executables). The fusion of these three information
sources makes procedure or method names unique, allowing them to be referred to unambi-
guously in the architecture reconstruction process. Without the view fusion, name clashes
would persist, and the reconstruction results would be ambiguous.

5.3 Guidelines
The following guidelines apply to the View Fusion phase:

• Fuse views when no single view provides the information needed for architecture recon-
struction. For example, the calls view needs to show the functional decomposition of the
system. If a static calls view and a dynamic calls view are present, they are fused to pro-
duce a single calls view that shows the decomposition.

• Fuse views when there is ambiguity within a view and a single view does not provide
clear information.

• Consider using different extraction techniques to extract different view information. For
example, both dynamic and static extraction techniques are available. Different instances
of the same kind of technique can be used if a single instance might provide erroneous or
incomplete information. For example, use different parsers for the same language if each
provides different information.

CMU/SEI-2002-TR-034 17

18 CMU/SEI-2002-TR-034

6 Architecture Reconstruction Phase

The Architecture Reconstruction phase consists of two primary activity areas:

• visualization and interaction

• pattern definition and recognition.

The visualization and interaction area provides a mechanism that allows the user to visualize,
explore, and manipulate views interactively. Rigi is used to present views to the user as a hi-
erarchically decomposed graph [Wong 94]. An example presentation of an architectural view
is shown in Figure 7.

General - 1 Root «ACTIVE»

\p«i,e jiidcjOJ,'

Stub--- V . __._^

x\ 7 vx

PresentatDn

pF "^^^^^MUm ^^ ■ ■'»v -V^

■i i

Figure 7: An Architectural View Represented at the Highest Hierarchical Level

CMU/SEI-2002-TR-034 19

The pattern definition and recognition area provides facilities for architectural reconstruction.
Dali's architecture reconstruction facilities allow a user to construct more abstract views from
more detailed ones by identifying aggregations of elements. Patterns are defined in Dali using
a combination of SQL and perl expressions. An SQL query is used to identify elements from
the Dali repository that will contribute to a new aggregation, and perl expressions are used to
transform names and perform other manipulations on the results of the query. Patterns are
captured in a patterns file, and users can selectively apply and reuse various patterns.

Architecture reconstruction is not a straightforward process. Architectural constructs are not
represented explicitly in the source code, making reconstruction especially difficult. Addi-
tionally, architectural constructs are realized by many diverse mechanisms in an implementa-
tion. Usually these are a collection of functions, classes, files, objects, and so forth. When a
system is initially developed, its high-level design/architectural elements are mapped to im-
plementation elements. Therefore, when architectural elements are "reconstructed," the in-
verse of the mappings needs to be applied.

Architecture reconstruction is an interpretive, interactive, and iterative process, not an auto-
matic process. It requires the skills and attention of both the reverse engineering expert and
the architect (or someone who has substantial knowledge of the architecture). Based upon the
architectural patterns that the architecture expert expects to find in the system, the reverse
engineer can build various queries using the Dali tool. These queries result in new aggrega-
tions that show various abstractions or clusterings of the lower level elements (which may be
source artifacts or abstractions). By interpreting these views and actively analyzing them, it is
possible to refine the queries and aggregations to produce several hypothesized architectural
views of the system. These views can be interpreted, further refined, or rejected. There are no
universal completion criteria for this process; it is complete when the architectural represen-
tation is sufficient to support the analysis needs of Dali users so the goals of the reconstruc-
tion can be achieved.

Consider the subset of elements and relations shown in Figure 8.

Element Relation Element
f defines_var a
f defines_var b
g calls f
f calls h

Figure 8: Subset of the Elements and Relations

In this example variables "a" and "b" are defined in function "f'; that is, they are local to "f'.
We can graphically represent this information as shown in Figure 9.

20 CMU/SEi-2002-TR-034

g

calls
1'

f
calls

h

defines_var defines_var

Figure 9: Graphical Representation of Elements and Relations

The local variables are not important during an architecture reconstruction because they pro-
vide little insight into the architecture of the system. Therefore, instances of local variables
can be aggregated to the functions in which they occur. Two patterns can be written for this
purpose. Examples of these types of patterns are shown in Figure 10.

#Local Variable aggregation
SELECT tName

FROM Components
WHERE tType='Function';

print "$fields[0]+ $fields[0] Function\n''

SELECT dl.func, dl.local_variable
FROM defines_var dl;

print ''$fields[0] $fields[l] Function\n'';

Figure 10: Patterns to Aggregate Local Variables to the Function in
Which They Are Defined

The first pattern updates the visual representation in Dali by adding a "+" after each function
name, which means that the function is now an aggregate of the function and the local vari-
ables defined within it. The SQL query selects functions from the components table. The perl
expression, starting with print..., is executed for each line of the SQL query results. The
$ fields array is automatically populated with the fields resulting from the query. In this
case, only one field is selected (tName) from the table, so $ f ields [0] will store the value
of this field for each tuple selected. The expression generates lines of the form:

<function>+ <function> Function

CMU/SEI-2002-TR-034 21

This line specifies that the element <function> should be aggregated into <function>+, which
will have the type Function.

The second pattern hides the local variables from the visualization. The SQL query will iden-
tify the local variables for each function defined by selecting each tuple in the
def ines_var table. Thus in the perl expression, $ fields [0] corresponds to the f unc
field and $f ields [1] corresponds to the local_variable field. So the output is of the
form

<function>+ <variable> Function

Each local variable for a function is to be added to the <function>+ aggregate for the func-
tion. The order of execution of these two patterns is not important because the final results
achieved through the application of both queries are sorted.

The result of applying the pattern is represented graphically in Figure 11. Most patterns in
Dali are developed in a similar manner.

Figure 11: Result of Applying the Pattern to Aggregate Local Variables

The primary mechanism for manipulating the views is the application of patterns (i.e., inverse
mappings). Examples include patterns that

• identify types

• aggregate local variables with functions

• aggregate members with classes

• compose architecture-level elements

An example of a pattern that identifies an architectural level component is shown in Figure
12. This query identifies the Logical_Interaction architectural component. The

22 CMU/SEI-2002-TR-034

query says that if the class name is Presentation, Bspline, or Color, or the class is a
subclass of Presentation, it belongs in the Logical_Interaction component.

SELECT tSubclass
FROM has_subclass
WHERE tSuperclass='Presentation';

print ''Logical_Interaction $fields[0]'';

SELECT tName
FROM components
WHERE tName='Presentation'
OR tName='BSpline'
OR tName='Color';

print ''Logical_Interaction $fields[0]'';

Figure 12: Query to Identify tlie Logicaljnteraction Component

Patterns are written in this way to abstract information from the lower level information to
generate architecture-level views. The reconstructor builds these patterns to test hypotheses
about the system. If a particular pattern does not yield useful results it can be discarded. The
reconstructor iterates through this process until useful architectural views have been obtained.

6.1 Guidelines
These guidelines apply to the Architecture Reconstruction phase:

• Be prepared to work with the architect closely and to iterate several times on the architec-
tural abstractions that are created. This is particularly important in cases where the sys-
tem has no explicit, documented architecture. In such cases, architectural abstractions can
be created as hypotheses, and these hypotheses can be tested by creating the views and
showing them to the architect and other stakeholders. Based on the false negatives and
false positives found, the architect may decide to create new abstractions, resulting in
new Dali patterns to apply (or perhaps even new extractions that need to be done).

• When developing patterns, try to build ones that are succinct and do not list every source
element. The pattern shown in Figure 12 is an example of a good pattern; an example of a
bad pattern is shown in Figure 13. In the bad pattern, the source elements that comprise
the component are simply listed, which makes the pattern difficult to use, understand, and
reuse.

• Patterns can be based on naming conventions if the naming conventions are used consis-
tently throughout the system. For example, a naming convention could specify that all
functions, data, and files that belong to the Interface component be given names that be-
gin with i_.

• Patterns can be based on the directory structure where files and functions are located.
Component aggregations can be based on these directories.

• As architecture reconstruction is the effort of redetermining architectural decisions, given
only the results of these decisions in the actual artifacts (i.e., the code that implements the

CMU/SEI-2002-TR-034 23

decisions). As the reconstruction process proceeds, information must be added to re-
introduce the architectural decisions. This process introduces bias from the
reconstructor, thus reinforcing the need for involvement by an architecture expert.

SELECT tName
FROM components
WHERE tName='vanish-xforms.cc'
OR tName='PrimitiveOp'
OR tName='Mapping'
OR tName='MappingEditor'

OR tName='InputValue'
OR tNaine='Point'
OR tNaine='VEC'
OR tName='MAT'

((tName - 'Dbg$' OR tName ~ 'Event$'
AND tType='Class');

'Dialogue $fields[0]'';

OR

print

Figure 13: Example of a Bad Pattern

24 CMU/SEI-2002-TR-034

7 Other Architecture Reconstruction
Approaches

This section explores other approaches for architecture analysis.

7.1 Bowman and Associates
Bowman and associates outline a similar method to that of Dali for extracting architectural
documentation from the code of an implemented system [Bowman 99]. In one example, they
reconstructed the architecture of the Linux system. They analyzed source code using the cfx
program (c-code fact extractor) to obtain symbol information (elements in Dali) from the
code and generated a set of relations between the symbols. Then, they manually created a
tree-structured decomposition of the Linux system into subsystems and assigned the source
files to these subsystems. Next, they used the grok fact manipulator tool to determine rela-
tions between the identified subsystems, and the Isedit visualization tool to visualize the ex-
tracted system structure. The resulting structure was refined by moving source files between
subsystems.

Unlike the approach used in Dali, this one is primarily manual. The reconstructor carries out
subsystem and component identification by manually selecting source file elements to belong
to these views. Dali is more automated, so queries can be written to carry out these tasks. The
first step in Bowman and associates' approach was to develop a conceptual architecture. This
step is not part of the phases of using Dali outlined earlier, but developing a conceptual archi-
tectural View with the help of the developers, maintainers, or the architecture is certainly part
of the overall approach when Dali is used. This conceptual architectural view helps to guide
the reconstruction effort in the generation and testing of hypotheses. The visualization using
Rigi allows for more interaction by the reconstructor. By selecting a particular component in
Dali, the lower level elements that comprise those components become visible, and by select-
ing a link between two components, the relations represented become visible. Bowman's ap-
proach does not appear to provide this level of interaction.

7.2 Harris and Associates
Harris and associates outline a framework for architecture reconstruction using a combined
bottom-up and top-down approach [Harris 95]. The framework consists of three components:
1) the architectural representation, 2) the source code recognition engine and supporting li-
brary of recognition queries, and 3) a "bird's eye" program overview capability. The bottom-
up analysis uses the bird's eye view to display the system's file structure and components and

CMU/SEI-2002-TR-034 25

to reorganize information into more meaningful clusters. The top-down analysis uses particu-
lar architectural styles to define components that should be found in the software. Recogni-
tion queries are then run to determine if the expected components exist.

Harris's approach is based on a set of implementation language independent queries that are
applied to an AST. Parsing the source code of a system generates the AST, which is specific
to a particular programming language. The application mechanism of the queries is also spe-
cific for each programming language (i.e., AST specific). Thus if a new language needs to be
handled, a new AST has to be developed, a parser has to be written, and a new application
mechanism has to be derived. This is not the case in Dali. Using Dali, views can be extracted
from different languages using the appropriate tools, and the development of queries to gen-
erate architectural representations does not depend on any particular programming language.
In fact, Dali can be used on code that cannot be parsed. Thus Dali is more easily applicable
across a wider set of programming languages. Harris's approach does provide some metrics
information about the amount of code covered by particular architectural styles in the system,
which may be useful for maintenance and reengineering purposes. For example, if a particu-
lar architectural style in the system has to be changed or reimplemented, it is possible to get
an idea of how big the problem will be. This type of information is not provided in the Dali
workbench.

7.3 Guo and Associates
Guo and associates outline the semi-automatic architecture recovery method (ARM) that as-
sists in architecture recovery for systems that are designed and developed using patterns [Guo
99]. It consists of four major phases: 1) developing a concrete pattern recognition plan, 2)
extracting a source model, 3) detecting and evaluating pattern instances, and 4) reconstruct-
ing and analyzing the architecture. Case studies have been presented showing the use of the
ARM method to reconstruct systems and check the conformance of these systems against
their documented architectures. Pattern rules are transformed into pattern queries, which can
be applied automatically to detect pattern instances from the source model. Refinement of the
pattern queries can help to improve the precision of pattern recognition. Visualizations of the
recovered patterns are presented to the tool user and aligned with the designed pattern in-
stances.

Guo and associates used the Dali workbench to perform the architecture recovery work. An
abstract pattern rule was then mapped into a concrete pattern rule and converted into an SQL
query. This query was then applied to the database to extract instances of the pattern. The Guo
method is intended for use on systems that have been developed using design pattems, limiting its
applicability. It can only be used with systems that were developed using design pattems or in cases
where the design pattern implementations have not eroded over time.

26 CMU/SEI-2002-TR-034

8 Summary

Four major phases of architecture reconstruction were outHned in this report:

• Information Extraction

• Database Construction

• View Fusion

• Architecture Reconstruction

The activities that are carried out to complete these steps were described, and examples of
tool support were provided for each activity. Guidelines for carrying out these activities to
obtain a satisfactory architecture representation from an existing system were provided. Most
of these guidelines are applicable even if other tools are used to support the reconstruction
effort and even when a reconstruction is carried out manually.

In our work at the SEI, we have used Dali to support the reconstruction efforts on several sys-
tems in a wide variety of domains. One of the reasons Dali has been very useful is because it
is language independence. It can be used to analyze information from many different lan-
guages and systems and from many different domains. The Dali workbench continues to
evolve and be applied on new projects.

CMU/SEI-2002-TR-034 27

28 CMU/SEI-2002-TR-034

References

[Bowman 99] Bowman, T.; Holt, R. C; & Brewster, N. V. "Linux as a Case
Study: Its Extracted Software Architecture." 555-563. Proceedings
of the iV International Conference on Software Engineering. Los
Angeles, CA, May 16-22, 1999. New York, NY: ACM Press, 1999.

[Brand 97] van den Brand, M. G J.; Sellink, M.; & Verhoef, C. "Generation of
Components for Software Renovation Factories From Context-Free
Grammars," 144-153. Proceedings of the Fourth Working Confer-
ence on Reverse Engineering. Amsterdam, The Netherlands, Octo-
ber 6-8,1997. New York, NY: ACM Press, 1997.

[Clements 02] Clements, P.; Kazman, R.; & Klein, M. Evaluating Software Archi-
tectures: Methods and Case Studies. Boston, MA: Addison-Wesley,
2002.

[Guo 99] Guo, G; Atlee, J.; & Kazman, R. "A Software Architecture Recon-
struction Method," 225-243. Proceedings of the First Working IFIP
Conference on Software Architecture (WICSAl). San Antonio, TX,
February 22-24,1999. Norwell, Massachusetts: Kluwer Academic
Publishers, 1999.

[Harris 95] Harris, D. R.; Reubenstein, H. B.; & Yeh, A. S. "Reverse Engineer-
ing to the Architectural Level." 186-195. Proceedings of the 17'''
International Conference on Software Engineering (ICSE). Seattle,
WA, April 23-30, 1995. New York, NY: ACM Press, 1995.

[Kazman 99] Kazman, R. & Carriere, S. J. "Playing Detective: Reconstructing
Software Architecture from Available Evidence." Journal of Auto-
mated Software Engineering 6, 2 (April 1999): 107-138.

[Kazman 00] Kazman, R.; Klein, M.; & Clements, P. ATAM: Method for Archi-
tecture Evaluation (CMU/SEI-2000-TR-004, ADA382629). Pitts-
burgh, PA.: Software Engineering Institute, Carnegie Mellon Uni-
versity, 2000. <http://www.sei.cmu.edu/publications/documents
/O0.reports/00tr004.html> (2000).

CMU/SEI-2002-TR-034 29

[Krikhaar 99]

[McCabe 00]

Krikhaar, R. Software Architecture Reconstruction, PhD Thesis.
University of Amsterdam, Amsterdam, The Netherlands, 1999.

McCabe & Associates, Inc. McCabe IQ2 Suite.
<http://www.mccabe.com> (Valid as of December 2002).

[MiJIIer 93]

[O'Brien 02]

[Sneed 98]

[Stonebraker 90]

[Wong 94]

Muller, H. A.; Mehmet, O. A.; Tilley, S. R.; & Uhl, J. S. "A Reverse
Engineering Approach to System Identification." Journal of Soft-
ware Maintenance: Research and Practice 5, 4 (December, 1993):
181-204.

O'Brien, L. Experiences in Architecture Reconstruction at Nokia,
(CMU/SEI-2002-TN-004). Pittsburgh, PA: Software Engineering

Institute, Carnegie Mellon University, 20(K).
<http://www.sei.cmu.edu/publications/documents/02.reports

/02tn004.html>.

Sneed, H. M. "Architecture and Functions of a Commercial Soft-
ware Reengineering Workbench." 2-10. Proceedings of the Second
Euromicro Conference on Maintenance and Reengineering.
Florence, Italy, March 8-11, 1998. Los Alamitos, CA: IEEE Com-
puter Society Press, 1998.

Stonebraker, M.; Rowe, L.; & Hirohama, M. 'The Implementation
of FOSTGRES."IEEE Transactions on Knowledge and Data Engi-
neering 2, 1. (March, 1990): 125-141.

Wong, K.; Tilley, S.; Muller, H.; & Storey, M. "Programmable Re-
verse Engineering." International Journal of Software Engineering
and Knowledge Engineering 4,4 (December 1994): 501-520.

30 CMU/SEI-2002-TR-034

REPORT DOCUMENTATION PAGE Form Approved
0MB No. 0704-0188

Public reporting burden tor this collection of information is estimated to average 1 hour per response, including the time for reviewing instmctions, searching
existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this
burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services,
Directorate for infomiation Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Ariington, VA 22202-4302, and to the Office of Management
and Budget, Papera/ork Reduction Project (0704-0188), Washington, DC 20503.
1. AGENCY USE ONLY

(LEAVE BLANK)
2. REPORT DATE

December 2002

3. REPORT TYPE AND DATES COVERED

Final

4. TITLE AND SUBTITLE

Architecture Reconstruction Guidelines, 2"" Edition
5. FUNDING NUMBERS

F19628-00-C-0003

6. autlior(s)
Rick Kazman, Liam O'Brien, Cliris Verhoef

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2002-TR-034

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

ESC-TR-2002-034

11. SUPPLEMENTARY NOTES

12.A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS
12.B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUIVI200 WORDS)

Architecture reconstruction is the process of obtaining the "as-built" architecture of an im-
plemented system from the existing legacy system. For this process, tools are used to ex-
tract information about the system that will assist in building successive levels of abstrac-
tion. Although generating a useful representation is not always possible, a successful
reconstruction results in an architectural representation that aids in reasoning about the
system. This recovered representation is most often used as a basis for redocumenting
the architecture of an existing system if the documentation is out of date or nonexistent,
and can be used to check the "as-builf architecture against the "as-designed" architec-
ture. The architectural representation can also be used as a starting point for reengineer-
ing the system to a new desired architecture. Finally, the representation can be used to
help identify components for reuse or to help establish a software product line.

This report describes the process of architecture reconstruction using the Dali architec-
ture reconstruction workbench. Guidelines are presented for reconstructing the architec-
tural representations of existing systems. Most of these guidelines are not specific to the
Dali tool, can be used with other tools, and are useful even if the architecture reconstruc-
tion is carried out manually.

14. SUBJECT TERMS

architecture representation, architecture reconstruc-
tion, architecture reengineering

NUMBER OF PAGES
42

16. PRICE CODE

7. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY
CLASSIRCATtON OF
THIS PAGE

UNCLASSIFIED

19. SECURITY
CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Sid. 239-18 298-102

